Pedaling, Fast and Slow
 The Race Towards an Optimized Power Strategy

Steven DiSilvio, Anthony Ozerov, Leon Zhou

Problem

Given:

- Cyclist (mass, power curve)
- Track

Optimize:

- Race strategy

To minimize:

- Time to finish race

Subject to:

- Fatigue
- Physical constraints

$f:$ [strategy, track data, cyclist data] \rightarrow race time ???

$$
\begin{aligned}
F_{a} & =\frac{1}{2} C_{d} A v_{a}^{2} \\
F_{g} & =m g \sin \left(\theta\left(x_{h}\right)\right) \\
F_{r} & =\mu_{r} m g \cos \left(\theta\left(x_{h}\right)\right) \\
F_{p} & =\frac{P(x)}{v} \\
F & =F_{p}-F_{a}-F_{g}-F_{r} \\
\frac{d v}{d t} & =\frac{F}{m} \\
\frac{d x}{d t} & =v
\end{aligned}
$$

f : Euler approximate x and v together until $x=$ end of race, and output time

Omni-PD Model

- Non-linear least squares to fit parameters
- Power levels were used as choices for the rider

Variable	Description	Units
$P_{\max }$	Max Power	W
P_{C}	Critical Power	W
W^{\prime}	Work above P_{C} (Anaerobic Work Capacity)	W
t	Time	s
$T_{\text {cpmax }}$	Time sustained at P_{C}	s
Constant	Description	
β	Linear Constant	-

$$
f(t)= \begin{cases}\frac{W^{\prime}}{t} *\left(1-e^{t * \frac{P_{\max }-P_{C}}{W^{\prime}}}\right)+P_{C} & t \leq T_{\text {cpmax }} \\ \frac{W^{\prime}}{t} *\left(1-e^{t * \frac{P_{\max }-P_{c}}{W^{\prime}}}\right)+P_{C}-\beta * \ln \left(\frac{t}{T_{\text {cpmax }}}\right) & t \geq T_{\text {cpmax }}\end{cases}
$$

Fatigue Constraint

E Euler approximated along with x and v, power output is capped at a low, sustainable value when E reaches zero

Physical Constraint

Tokyo 2020 Road Time Trial Track Curvature

v is capped at the maximum speed around a curve

Optimizing strategy to minimize f

Central Park Course Curvature

Paper:

https://github.com/anthonyozerov/optimal-cycling/blob/main/2022 mcm submission.pdf

Code:

https://github.com/anthonyozerov/optimal-cycling

