Latitudinal Variation of Bolide Flux as Detected by GOES GLM

Anthony Ozerov

Mentor: Jeffrey C. Smith

Goal: estimate how bolides impact the Earth across latitudes

Application: validate theoretical calculations based on NEO population models

Robertson et. al, 2020

Geostationary Lightning Mapper (GLM)

Catal a tabababa a tababab

GLM bolide detection problems & biases

- Non-global FOV
- Angle of incidence of light into sensor
- Data show that more massive and faster bolides (→brighter) are easier to detect
- Possible other biases???

Modeling rates: Poisson Distribution

If I run a bagel store, how many people will (arrive between 11:00 and 12:00? (

If am an area on the Earth, how many bolides will be detected in me between 2019 and 2022?

Notation	$\mathrm{Pois}(\lambda)$				
Parameters	$\lambda \in (0,\infty)$ (rate)				
Support	$k \in \mathbb{N}_0$ (Natural numbers starting from 0)				
PMF	$rac{\lambda^k e^{-\lambda}}{k!}$				

https://en.wikipedia.org/wiki/Poisson_distribution

$$\sum_{\substack{\text{distance from}\\\text{nadir}}} b(d) = \exp(\alpha_0 + \alpha_1 d + \alpha_2 d^2 + \alpha_3 d^3)$$

$$\sum_{\substack{\text{Regression on}\\\text{latitude}}} \lambda_s(l) = \exp(\beta_{s,0} + \beta_{s,1} l + \beta_{s,2} l^2 + \beta_{s,3} |l^3|)$$

The Model
$$y(A,T) \sim \text{Poisson} \left(\int_{T} \int_{A} \Lambda(d,l,t) \, dd \, dl \, dt \right)$$

 $\Lambda(d,l,t) = b(d) \sum_{\substack{s \in S(t) \\ \text{of incidence}}} \lambda_s(l)$
Function of $distance from b(d) = \exp(f_b(d)); f_b(x) \sim GP(m(x), k(x, x'))$
Function of $\lambda_s(l) = \exp(f_s(l)); f_s(x) \sim GP(m(x), k(x, x'))$

Scatter data \rightarrow discretized count data

1. Split bolides according to satellite

2. For a satellite, randomly split the GLM FOV into small polygons

Uniformly random points

Voronoi diagram to get polygons Clip to FOV

Scatter data \rightarrow discretized count data

3. Split bolides into different showers and the background rate based on time.

4. Collect polygon data

- Count: number of bolides within polygon
- Area: area of polygon
- **Duration**: Normalized GLM observing time
- Latitude: Latitude of centroid
- Nadir distance: Centroid's distance from satellite's nadir:
- **Source:** what shower this data is for

5. Re-combine data for all showers and both satellites

count	latitude	nadir distance	area	duration	leonids?
5	37.2°	5000km	5	1	0

Markov chain Monte-Carlo to obtain posteriors

b

л_b

Bolide rate dependent on latitude

Чb

 λ_{s}

Conclusion

- Successfully estimated GLM detection bias due to angle of incidence
- Distribution across latitudes consistent with GLM being biased towards fast objects
- Can separate out meteor showers from background rate

Further study:

- Study other, less intense meteor showers
- Nonparametrics and model comparison
- De-biasing according to velocity
- Computing and studying velocities, trajectories, and orbits in the stereo region

Python package

bolides

A package to analyze bolide data in Python.

pypi 🔽 docs passing 😵 launch binder

bolides.readthedocs.io

bdf = BolideDataFrame(source='usg')

[7]: bdf

[7]: GLM bolide detections from neo-bolide.ndc.nasa.gov, developed and operated by NASA's Asteroid Three Assessment Project thanks to funding from NASA's Planetary Defense Coordination Office.

	datetime	longitude	latitude	source	detectedBy	confidenceRating	lightcurveStructure	energy_g	
0	2022-07-18 21:30:03	-96.6	-18.5	website	GLM-16,GLM-17	medium	very good	2.284910e-	
1	2022-07-18 15:22:59	-111.0	28.0	website	GLM-16,GLM-17	medium	good	3.084814e-	
2	2022-07-18 13:04:02	-40.8	4.2	website	GLM-16	low	minimal	3.184802e-	

Interactive Bolide Data Visualizer bolides.seti.org

Select a data source

USG data at cneos.jpl.nasa.gov/fireballs/

GLM data at neo-bolide.ndc.nasa.gov/

Global Meteor Network data at globalmeteornetwork.org/data/

Meteor shower data at www.ta3.sk/IAUC22DB/MDC2007/

USG data with computed orbits

Date filters: start date yyyy-mm-dd end date yyyy-mm-dd

Meteor shower filter: Select meteor shower(s)

Field-of-view options:

 $\label{eq:goes-e} goes-e \, \hfill goes-w-ni \, \hfill goes-w-i \, \hfill fy4a - n \, \hfill fy4a-s \, \hfill gmn-25km \, \hfill gmn-70km \, \hfill gmn-100km \, \hfill gmn$

□ Filter by FOV □ Intersection

Sensor observation filters: □glm16 □glm17 □Intersection

Acknowledgments

Jeffrey Smith: Mentor Darrel Robertson: Impact simulation code, helpful discussion NASA ATAP GLM team: Bolide data, helpful discussion

Jeffrey Smith Jessie Dotson Robert Morris Randy Longenbaugh Tasan Smith-Gandy Nina McCurdy **Katrina Virts**: FOV data

Developers of open-source software, especially: Python and the scientific Python stack Lightkurve, Astropy PyMC Linux, Ubuntu, Nginx, Flask, Plotly, Spacekit

Conclusion

- Successfully estimated GLM detection bias due to angle of incidence
- Distribution across latitudes consistent with GLM being biased towards fast objects
- Can separate out meteor showers from background rate

Further study:

- Study other, less intense meteor showers
- Nonparametrics and model comparison
- De-biasing according to velocity
- Computing and studying velocities, trajectories, and orbits in the stereo region

$$\int_{A} \Lambda(d, l, t) \, dd \, dl \approx a_A \Lambda(d_A, l_A, t)$$
$$\int_{T} a_A \cdot \Lambda(d_A, l_A, t) dt = \mu(T) \Lambda(d_A, l_A, t_0),$$