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Abstract

The large combined field of view of the Geostationary Lightning Mapper (GLM) instru-
ments on the GOES satellites makes them useful for studying bolides (bright meteors).
The thousands of GLM bolide detections allow us to empirically investigate the latitudinal
variation of bolide flux. We discretize the data using a randomized method and develop a
Bayesian Poisson regression model which simultaneously estimates GLM bolide detection
biases and the latitudinal flux variation. The estimated bias due to the angle of incident
light upon the instrument corresponds roughly with the previously measured sensitivity of
the GLM instruments. We compare our latitudinal flux variation estimates—including for
particular meteor showers—to existing theoretical models and discuss how much a bias
due to bolide impact velocities may affect estimates derived from GLM data.
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1 Introduction
It is well-established that asteroids do not necessarily impact the Earth uniformly (Robertson
et al., 2021). Based on the distribution of orbits of Near-Earth Objects (NEOs), particularly
the ecliptic latitude at the point where they cross the Earth’s orbit and their velocity relative
to the Earth, the distribution of impacts across latitudes can be estimated. This has been
done, but different results have been obtained based on the NEO databases and methods used
(Robertson et al., 2021; Le Feuvre and Wieczorek, 2008). In terms of empirically verifying
the estimates, the two main methods used in the literature are cratering records and impact
detections. Cratering records are applicable to bodies like the Moon (Robertson et al., 2021; Le
Feuvre and Wieczorek, 2008), but are difficult to employ on the Earth. For impact detections,
there are several possible sources of data.

US Government sensors Previous work has used impact detections from United States
Government (USG) sensors (Robertson et al., 2021; Evatt et al., 2020). This set of data is
appealing as it has global coverage. However, due to the classified nature of the sensors, the
detection biases of this data set are unknown. Due to the other priorities of these sensors,
they may not necessarily have a uniform detection efficiency across different latitudes. For
instance, the sensors might generally have a lower detection efficiency for objects hitting the
poles (which would explain all of the discrepancy described in Robertson et al., 2021). This
makes it impossible to use this data to probe the distribution of bolide impacts across latitudes.

Ground-based systems Automated ground-based photo, video, and radar meteor observation
stations detect thousands of meteor impacts daily. Yet they mostly detect small objects from
known meteor showers, and their limited coverage in area makes it more difficult to study the
distribution of rarer, larger objects of greater concern for planetary defense. Moreover, some
systems are unable to detect objects during the day, and there are other factors like weather and
the specifics of a given system that may nonuniformly affect detection efficiency across different
latitudes.

Geostationary Lightning Mapper Data from the Geostationary Lightning Mapper (GLM)
instruments aboard the Geostationary Operational Environmental Satellites (GOES), which are
known to detect bolides, have also been used (Smith et al., 2021; Robertson et al., 2021). This
data set is appealing as it has near-hemispheric coverage and much more is known about the
sensors than with the US Government data. In previous studies, only human-vetted data, which
has a bias towards the stereo region, has been used. Other biases, like the angle of incident light
upon the sensor, have not previously been accounted for. This paper seeks to account for these
biases and produce a more accurate estimate of the variation in bolide impacts across latitudes.
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2 Methods

2.1 Data
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Figure 1: All detections in the database used, colored by which satellite detected them. There are
double-detections in the stereo region, where the same object was detected by both satellites. The
boundaries are the two platforms’ FOV boundaries. The FOV boundaries closely match the limits of
the bolide detections. Eckert IV projection. Figure generated using bolides (Ozerov and Smith, n.d.).

We use bolide detections from the GLM bolide detection pipeline (Smith et al., 2021) run for days
between 2019-07-01 and 2022-06-03. We only keep data with a confidence threshold of ≥ 0.7, as
at that threshold the false positive rate is evenly distributed over the field of view—with lower
thresholds, glint and lightning activity introduce a bias. For the purposes of this investigation
we assume that all of these detections are true positives. The pipeline also runs separately
for each satellite, i.e. each satellite makes its detections independently. This means that, in
the data used here, some detections in the stereo region (where both satellites may detect an
event) appear twice—once for each satellite—which is important as we treat each satellite as
an independent detector. Using the unvetted pipeline data reduces the human selection bias,
which overremphasizes the stereo region (as a stereo detection is a very confident one for a
human vettor). Due to the shape of the stereo region–which is not a uniform proportion of the
total GLM FOV across latitudes–previous attempts to use GLM data to study the latitudinal
distribution of impacts likely exhibit artifacts of this human bias. We do note, though, that
even though we study unvetted data, the underlying classifier is still trained on human-vetted
data and may exhibit some bias as a result of this.
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2.2 Poisson Regression
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Figure 2: Diagram of the hierarchical Bayesian Poisson regression model. Outlined in red is the
data-generating process. Outlined in green are the vectors of coefficients to be estimated. Areas,
durations, and counts come from the discretization discussed below.

Since we are investigating bolide flux as a function of latitude, with distance from nadir
accounted for, we can model the observed bolides as coming from a Poisson distribution with an
inhomogeneous rate. The Poisson distribution comes with the assumption that impacts are not
autocorrelated. The data do not show any apparent clustering in both space and time (as they
would if, say, an object broke up just before reaching the Earth), so we accept this assumption.
The model can then be expressed as:

y(A, T ) ∼ Poisson
(∫

T

∫
A

Λ(d, l, t) dd dl dt

)
,

where y(A, T ) is the number of bolides in region A (any set of latitudes and longitudes) over
a set of times T , and Λ(d, l, t) is the inhomogeneous rate function (in terms of d, the distance
from the nadir, l, the latitude, and t, time) of the Poisson distribution that generates y(A, T ).
Since we want to simultaneously estimate the bias due to the angle of incident light upon the
sensor and the variation over different latitudes for the base rate and the targeted showers,
Λ(d, l, t) is a product of two terms:

Λ(d, l, t) = b(d)
∑
s∈S(t)

λs(l),

4



where b(d) is a multiplier due to the angle of incident light upon the sensor and S(t) is a set
of bolide sources active during time t, which always includes the background rate and may
include a meteor shower. λs(l) is a function representing the rate attributed to a particular
bolide source, as a function of latitude. b(d) is defined as:

b(d) = exp(α0 + α1d+ α2d
2 + α3d

3),

where the α’s are estimated coefficients and d is the distance, in kilometers, from the nadir of
the corresponding satellite.

λs(l) is defined as:

λs(l) = exp(βs,0 + βs,1l + βs,2l
2 + βs,3|l3|),

where the βs’s are estimated coefficients for source s and l is latitude.
Expressing the model in this way allows for the simultaneous estimation of the detection

bias as a function of distance from nadir and the additive rates due to different meteor showers
and the background rate. Multiplying the detection bias by the sum of the rates gives the total
observed rate of GLM.

2.3 Nonparametrics
To confirm that the efficient and more interpretable parametric method is able to recover the
distributions, we also perform a fit where the bias term and functions of latitude are instead
exponentiated Gaussian processes:

b(d) = exp(fb(d)); fb(x) ∼ GP (m(x), k(x, x′))

λs(l) = exp(fs(l)); fs(x) ∼ GP (m(x), k(x, x′))

We use mean function of zero and the Exponentiated Quadratic kernel:

k(x, x′) = exp

(
−(x− x′)2

2`2

)
,

where ` ∼ Exp(1). We choose the Exponentiated Quadratic kernel as it makes for smooth
results. There is no reason to expect the true latitudinal distribution to be jagged.
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2.4 Discretization
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Figure 3: Sample discretization of GOES-16’s bolide detections. The field of view is split into small
polygons, and the density of bolides in each polygon is shown. The red points are the centroids of the
polygons, which are used to compute the latitude, longitude, and distance from nadir. The main map
is in the Eckert IV projection centered on GOES-16’s nadir. The inset globe is from the perspective of
GOES-16 (the GLM field of view, though it takes on an odd shape in most projections, is really a
square with the corners masked).

As we use a spatial Poisson regression model, which has a computationally intractable likelihood
function, we must discretize the point data into a set of counts. It is possible to simply grid the
data, but we instead use a randomized method which can be repeated and shown to be robust.
This allows us to sample from the model multiple times, with different random polygons, and
be confident that an arbitrary gridding is not affecting the results. For each satellite (GOES-16
and GOES-17), we:

1. Get a uniformly random set P of points within the satellite’s collecting area in the
Azimuthal Equal Area coordinate reference system centered at the satellite’s nadir. Ratio-
nale: An equal area projection means that there is no systematic effect on polygon size of
latitude, longitude, or distance from nadir. The rotational symmetry of the Azimuthal
Equal Area projection in particular ensures that there are no differences between the
general shapes of the polygons made at the extreme edge of the FOV in longitude and at
the extreme edge in latitude.

2. Repeat the following:
(a) Compute the Voronoi diagram V from P using the Qhull library (Virtanen et al.,

2020; Barber C.B. and H.T., 1996).
(b) Let P be the centroids (geometric centers-of-mass) of the polygons in V , as computed

in the Azimuthal Equal Area projection.
Rationale: This iterative algorithm approaches a centroidal Voronoi diagarm, which creates
polygons that are uniform in size. (Du, Faber, and Gunzburger, 1999) In principle, it
is not actually necessary to use polygons of uniform size, but doing so guarantees a fine
resolution across the field of view with fewer polygons.

3. Clip the polygons of the Voronoi diagram to the sensor’s FOV. Rationale: This ensures
that the shape of the FOV is taken into account, and e.g. the lack of observations in the
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extreme North and South just outside the FOV isn’t taken to imply a decrease in flux at
high latitudes.

4. Count the number of detections within each polygon.
5. Compute the area of each polygon.
6. Compute the “observation duration” of each polygon. This is 1 for most, but for those

which are only observed for half of the year by GOES-17 this is 1− a/2, where a is the
proportion of the polygon which is only in GOES-17’s inverted FOV or non-inverted FOV
(i.e. the proportion of the polygon within the symmetric difference of the inverted and
non-inverted FOV). Rationale: This ensures that fewer detections in the regions where
GOES-17 only observes for half of the year, which also happen to be at extreme latitudes,
are not taken to imply a decrease in flux at high latitudes.

7. Compute the latitude, longitude, and distance from nadir of each polygon according to its
centroid.

This discretization works because, within a small polygon, the distance from the satellite’s
nadir and the latitude will vary little, and Λ will be roughly constant. Thus we get the relation
that: ∫

A

Λ(d, l, t) dd dl ≈ aAΛ(dA, lA, t)

Where aA is the area of polygon A, dA is the distance of polygon A’s centroid from the nadir,
and lA is the latitude of the centroid.

For additionally discretizing time, since we assume that bolide sources are either active or
not active given a time, we see that∫

T

aA · Λ(dA, lA, t)dt = µ(T )Λ(dA, lA, t0),

as long as S(t) = S(t0) ∀t ∈ T . We thus group the data into bolides within each target meteor
shower, and bolides not associated with any of the target meteor showers. For every shower,
and for the base rate, we do the process above, and then add S new indicator variables to the
polygons indicating which showers they belong to. We are thus left with a table of polygons
with the following variables:

• Count
• Latitude (◦)
• Distance from nadir (km)
• Area (km2)
• Duration (arbitrary units)
• Is [shower 1]? (0/1)
• Is [shower 2]? (0/1)
• …
• Is [shower n]? (0/1)

2.5 Bayesian representation
The above model could be fit by simply selecting the α’s and β’s to maximize the likelihood of
the observed data. However, this would not allow for proper uncertainty quantification. Instead,
we specify priors on the the α’s and β’s as Normal distributions centered on zero with a standard
deviation large enough to be non-informative in the parameterization of the variables that is
used when fitting. We then sample the posterior distributions of the model using the No-U-Turn
Sampler (Hoffman, Gelman, et al., 2014) in PyMC (Salvatier, Wiecki, and Fonnesbeck, 2016).
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2.6 Theoretical computations
To contextualize and understand the empirical results, we also expand upon the theoretical
calculations of latitudinal impact distributions performed in previous work by providing calcula-
tions for given radiant velocities and specific meteor showers. We do both using the method
of (Robertson et al., 2021). For given radiant velocities, rather than performing Monte Carlo
calculations using the joint velocity and ecliptic latitude distribution, we use the conditional
distribution of ecliptic latitude given a velocity. For specific meteor showers, we perform the
Monte Carlo calculations starting with the given meteor shower’s radiant and radiant velocity.
Since the assumption of North-South impact symmetry no longer applies for specific meteor
showers as it does for the total NEO population, we do not fold the distribution.

3 Results
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Figure 4: Bolide rate as a function of the angle of incident light upon the sensor, along with curves
representing unpublished sensor performance data. Rate is per unit area per unit time. The regression
was done as a function of distance from nadir, but this figure reparameterizes b(d) in terms of angle.
The samples from the posterior roughly follow the curves representing the fraction of lightning signal
reaching the detector, peaking at about 5◦.

We run the model described above with just the Leonids and the background rate as the shower
sources. For the Leonids, we set them as active for 10 days from their peak solar longitude as
computed from ground-based meteor cameras (P. Jenniskens et al., 2016). Running the model
with the Perseids—the second most prominent meteor shower in GLM data—included too was
deemed unsuccessful as some coefficients for the Perseids achieved distributions as wide as their
priors, intendend to be uninformative.

After running the No-U-Turn sampler to obtain the posterior ditributions, we can separately
examine the posterior distributions of the polynomials for b(d) and λs(l). Figure 4 displays the
variation of the bolide rate as a function of the angle of incident light upon the sensor. The
alignment of the posterior bolide detection rate curves with the known efficiency of the sensor
suggests that the bandshift due to incidence angle does indeed affect bolide detection efficiency.

Figure 5 displays the variation of the non-Leonid bolide rate as a function of latitude. The
steep drop-off at high latitudes is consistent with GLM being strongly biased towards detecting
faster objects. We believe the bias to the North is a true bias, as the flux of meteor showers is
higher in the Northern sky (American Meteor Society, n.d.).

8



−40 −20 0 20 40

Latitude (°)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

b
ol

id
e

fl
u

x

Bolide rate dependent on latitude

50km/s radiant

55km/s radiant

60km/s radiant

65km/s radiant

68km/s radiant

Posterior samples

Central 80%

MAP

0 10 20 30 40 50

Latitude (°)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

b
ol

id
e

fl
u

x

Bolide rate dependent on latitude

50km/s radiant

55km/s radiant

60km/s radiant

65km/s radiant

68km/s radiant

Posterior samples

Central 80%

MAP

Figure 5: Non-Leonid bolide rate as a function of latitude. The figure on the right folds latitude
over the equator, so -50◦ becomes 50◦. Rate is per unit area per unit time. Theoretical distributions
obtained using the method of (Robertson et al., 2021) with fixed radiant velocities. In the plot on
the left, we see that GLM bolide detections seem biased towards the North, even after removing
the Leonids. In the plot on the right, while the observed curve does not precisely match any of the
theoretical curves, the drop-off at high latitudes is consistent with GLM being biased towards very fast
objects.
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Figure 6: Leonid bolide rate as a function of latitude. The figure on the right folds latitude over the
equator, so -50◦ becomes 50◦. Rate is per unit area per unit time. Theoretical distribution obtained
using the method of (Robertson et al., 2021) with radiant velocity, radiant declination, and solar
longitude fixed to median values for the Leonids (P. Jenniskens et al., 2016). We see that the theoretical
distribution is consistent with that observed by GLM.

9



There are several ways to verify the robustness of the model. Figure 6 displays the variation
of the Leonid bolide rate as a function of latitude, and the observed distribution is consistent
with the theoretical distribution. Figure 12 shows the headline result for several different
confidence thresholds, showing that it is similar for thresholds between 0.5 and 0.9. Finally,
Figure 13 shows the results when bolides detected by GOES-16 and GOES-17 are considered
separately, again showing similar results and demonstrating how the method pools the results
from both satellites to obtain a tighter fit that is less dependent on any possible effects of the
geography in a satellite’s FOV.

4 Discussion

4.1 Computed distribution and bias
The key result, that GLM does indeed detect a decrease in bolide flux at high latitudes, is
consistent with GLM being biased towards faster objects. The fact that GLM is dispropor-
tionately sensitive to the Leonids, which have a radiant velocity of 70km/s suggests that GLM
does indeed have this bias. This is consistent with the observed bolide detections by solar hour
depicted in Figure 9, which shows an overabundance of detections at points in the direction of
the Earth’s motion even while there does not appear to be no large effect of sunlight on bolide
detection efficiency. It would also make physical sense, as faster objects deposit more energy
into the atmosphere. However, because most GLM detections, being outside of the stereo region,
do not have associated velocity data, and most detections in the stereo region are single-pixel
observations with unreliable velocity data, adjusting for velocity is not currently possible. A full
analysis of GLM velocity calculations, their uncertainty, and velocity-derived detection biases
remains to be done.

Figure 6, showing Leonid bolide rates across latitudes, shows good agreement between the
distribution detected by GLM and the theoretical distribution (which is well-understood). This
suggests that the debiasing according to nadir distance does indeed bring the GLM-detected
bolide rates close to the true rates. Further development of the methods will allow studying
other, less-prominent meteor showers that appear in GLM data.

Figure 4, showing bolide rate as a function of the angle of incidence of the light entering
the sensor, shows a strong dependence. This dependence aligns quite well with the measured
performance of the sensor, particularly the “Raw signal” curve showing the efficiency of the
sensor for the light emitted by lightning. However, GLM detects a combination of continuum
emission and oxygen line emission during bolide impacts (Peter Jenniskens et al., 2018; Smith
et al., 2021), and angle of incidence affects both the total efficiency of light transmission and
shifts the band of the narrowband filter nominally at 777.4nm. Thus the detection efficiency of
bolides as a function of angle of incidence is a combination of different optical effects affecting
both continuum and line emmission and depends on bolide velocity, mass, and composition. In
turn, the observed bolide rate as a function of angle of incidence depends on the population of
bolides. Fully disentangling and understanding these effects is the subject of future work.
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4.2 Comparison to previous empirical calculations
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Figure 7: Density of USG bolide detections produced by a kernel density estimator with the Haversine
distance metric and a bandwidth of 20◦. There is no reason to assume that the USG sensors have the
same sensitivity across the globe. Eckert IV projection. Figure generated using bolides (Ozerov and
Smith, n.d.).

Robertson et al., 2021 and Evatt et al., 2020 include empirical calculations for USG data. They
both demonstrate a flux that appears to increase then decline as one moves away from the
equator. In the USG data, the large error bars may indicate that the initial rise might be due
to sampling error. However, the decline at high latitudes appears to be significant in both
studies. A decline at high latitudes is consistent with our findings in GLM data, though as
Robertson et al., 2021 note, the USG data does not seem to show a decline until latitudes that
are outside the GLM field of view. But in principle USG data cannot be used for such studies as
the detection efficiency of the sensors cannot be assumed to be uniform across the surface of the
Earth (see Figure 7). While USG data is highly useful for studying individual events, insufficient
information is available about the sensor capabilities and pipeline to apply something like the
model in this paper to it in an attempt to debias it for population studies.

Robertson et al., 2021 also includes empirical calculations for GLM data. They again show
an increase followed by a decline as one moves away from the equator, though a much sooner
decline than for USG data. Our Figure 4 shows that detection rates peak at some distance
from the nadir, which happens to correspond with about twenty degrees of latitude. Hence our
Figure 5 does not show as much of an increase in flux as one moves away from the equator.
Similarly, our results show that detection rates plummet at high angles of incidence of light
into the sensor, and hence our results do not show as much of a decrease at high latitudes,
though there is still a decline. In both cases, estimating and taking into account the bias due
to the angle of incidence makes the variation observed across latitudes less extreme. We also
use pipeline data rather than human-vetted data, and use the computed FOV rather than the
nominal FOV, which no doubt also makes our results differ from previous work.

4.3 Comparison to previous theoretical calculations
Several previous studies have made theoretical calculations of the latitudinal distribution of
impacts. These studies fall into two categories:
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1. Halliday, 1964 and Evatt et al., 2020 proceed from the assumption that the vast majority
of impactors come from the ecliptic, and with some calculations obtain the resulting
distributions for given velocities. The former simply reports these distributions, while the
latter uses the velocity distribution in USG data to derive a final distribution.

2. Le Feuvre and Wieczorek, 2008 and Robertson et al., 2021 proceed from data on known
NEOs and their impact computed probabilities to produce distributions of ecliptic latitude
and velocity, and run Monte-Carlo simulations to obtain final distributions (the difference
lies in the NEO database and the impact probabilities).

The studies in (1) predict a large decrease in flux at high latitudes, while those in (2) predict
either a roughly uniform distribution or an increase in flux at high latitudes. This difference is
understandable, as including objects with high inclinations in the calculations will increase the
relative flux at the poles. Taking our results at face value would suggest that the distributions
in (1) are more accurate, and that the studies in (2) over-emphasize objects at high inclinations
(perhaps assigning them a too-high impact probability). However, due to the possible velocity
bias in GLM detections, which would in fact create such an observed dropoff at high latitudes,
the results cannot be taken to support the studies in (1) over those in (2).

4.4 Impossibility of completely debiasing the distribution
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Variables:
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Figure 8: Diagram representing the observed and unobserved variables and the relationships between
them. C: bolide’s physical characteristics (mass, composition, etc.). O: bolide’s orbit prior to the
encounter with the Earth. V : radiant velocity. R: radiant. D: impact distance from nadir. L: impact
latitude. S: a selection variable representing whether or not the bolide is detected. Both D and L are
affected by both V and R, which in turn are determined by O, the orbit. S is conditioned upon in the
data because all bolides in the data have necessarily been detected. It is unknown how C, V , and D
affect the probability of being detected, but the effect of D is estimated here.

Only using GLM data, it not possible to say what proportion of bolides with a certain mass and
velocity are detected, which makes it not possible to adjust for these factors and get closer to the
true distribution. Figure 8 is a causal representation of how the data are generated. With such
a diagram in hand, it is easy to see that it is impossible to recover P (L) (the distribution over
latitudes, not conditioned on anything) from the data P (L,D|S = 1) without making strong
assumptions that V and C don’t affect S. In fact, to estimate P (L) independent of any GLM
detection biases, one would have to define more carefully what exact objects are meant (1-meter
objects, 0.5-meter, or smaller? Or perhaps some threshold of energy deposition?). If one were
to assume that C does not affect S, then knowing V would be enough, as:

P (L) =
∑
v,d,s

P (L|S = s, V,D)P (S = s|V,D)P (V,D) =
∑
v,d,s

P (L|S = 1, V,D)P (S = s|V,D)P (V,D)

The key step is that L is independent of S when conditioned on V and D (assuming that C has
no effect on S). The distribution P (S = s|V,D) could be estimated similarly to how, in effect,
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P (S = s|D) is estimated in this paper. There is an additional relationship between V and D
which would need to be disentangled, but it is reasonable to assume that V does not have a
significant effect on D. Then all that is needed is the assumption that D is uniform, which is
reasonable because it is determined by a uniform point on the impact disk, and knowledge of
P (V ), which can be obtained from other sources.

The GLM data does contain estimates of V in the stereo region, and can in principle be used
to obtain velocity vectors and compute the radiant and the orbit, but this is only effective in
multi-pixel detections, which are relatively rare. More work is needed to study GLM’s estimates
of V .

4.5 Other approaches to probing biases
4.5.1 Diurnal variation
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Figure 9: The histograms on the left are bolide detections by the local solar hour at the time of the
impact (12 being noon). The red line corresponds to a solar hour of 6, which is when, for an observer
at the equator, the direction of the Earth’s motion is directly above. Those on the right are bolide
detections by the apparent solar altitude, i.e. the altitude, in degrees, of the Sun above the horizon (no
atmospheric refraction). The light green line corresponds to the Sun being directly on the horizon
(again, assuming no refraction). The top two figures are for GLM data, the bottom two are for USG
data as of 2022-12-20.

As another piece of evidence supporting the idea that GLM is much more sensitive towards
faster objects, consider Figure 9. This figure shows that, in local solar time at a bolide’s location,
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detections peak at six in the morning in the GLM data (in fact, this is the case in all seasons,
as seen in Figure 11). This is also the local solar time when a standing observer at the equator
is travelling head-first in the direction of the Earth’s motion. USG data does not show such a
peak. Given that, in both, there does not appear to be a major effect of solar illumination on
detection rates, this again suggests a detection bias towards faster objects in GLM data, as,
generally, the fastest objects (in terms of relative velocity to the Earth) come from retrograde
orbits and hence tend to impact at around 06:00. If there were no such bias, we would expect a
bimodal distribution, or perhaps a weaker peak, as there would be more detections at midnight
and noon in local solar time (which correspond to objects crossing the Earth’s orbit from further
and closer to the Sun, respectively) (Robertson et al., 2021). This is, in fact, what is seen in the
USG data.

GLM’s distribution over solar hour can also be compared to the diurnal variation of meteor
rates as detected by ground-based meteor radars. The ratio of GLM detection counts from the
peak at 05:30-06:30 to the trough at 17:30 to 18:30 is 516/32 = 16.125. This is very much on
the extreme end of the diurnal variations reported by several meteor radar systems in various
locations and times of year (Lovell, 1954; Okamoto and Maegawa, 2008; Singer et al., 2005;
Szasz et al., 2004), which again suggests that GLM has a strong bias towards high-velocity
objects.

4.5.2 Sensitivity to meteor showers
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Figure 10: GLM bolide detections by the solar longitude at the time of the impact (0 being the vernal
equinox). Dashed and dotted lines represent the solar longitudes of the peaks of different meteor
showers (P. Jenniskens et al., 2016).

As seen in Figure 10, there is an increase in detections around the peak of the Leonids.
Though it is not possible to attribute GLM detections to specific meteor showers, this temporal
correspondence suggests that GLM is particularly sensitive to the Leonids, which also has one
of the fastest radiant velocities at 70km/s (P. Jenniskens et al., 2016). GLM appears to be more
sensitive to the Leonids than to the Perseids (59km/s), Orionids (66km/s), and η Aquariids
(66 km/s). The Leonids are, in fact, not at all more prominent than these other showers in
ground-based data (P. Jenniskens et al., 2016; Vida et al., 2021), again suggesting that GLM
has a bias due to velocity. Given the small differences in radiant velocity, the bias must be
quite large, unless other factors, like differences in meteor size or composition in the different
showers, play a role. Other prominent showers, like the Geminids (34km/s), do not appear to
be associated with any spike in flux in the GLM data.
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4.6 Future work
Several ground-based meteor networks have cameras in the GLM field of view, and their ground-
based observations allow precise estimates of orbits, velocities, and some estimation of physical
characteristics. Given that ground-based data contains much fainter objects than GLM data
does, it may be possible to assume that ground-based data will detect all impacts above a
certain mass and velocity. Given this, it is possible to compute a distribution P (S|V,C) by
seeing what proportion of ground-based detections at certain characteristics and velocities are
detected by GLM. With some assumptions on how P (S|V,C,D) acts as a function of V , M , and
D (one reasonable one being that the effects of (V,M) and D are multiplicative in decreasing
the probability of detection), it may then be possible to completely debias GLM’s observed
distribution. However, there are challenges associated with this, including that ground-based
data is affected by weather and, in particular, sunlight, which may skew the data in unexpected
ways. Alternatively, more work could be done on fusing ground-based data with GLM data to
improve models estimating velocity and physical characteristics from GLM data alone.

5 Conclusion
We have partially debiased the latitudinal variation of bolide flux detected by GOES GLM by
estimating and accounting for optical effects using a Poisson regression. Using this parametric
method, we also offer much tighter distributions than completely nonparametric methods like
binning and using Poisson errors which do not take full advantage of the data and lead to larger
errors than necessary. It is reasonable to assume that the variation with latitudes is smooth
and does not jump wildly from one bin to the next.

Our method is able to recover the well-understood latitudinal distribution of a meteor shower
like the Leonids. Yet we advise against using the results of this work in confirming or rejecting
theoretical models of overall impact distributions, as GLM’s bolide detection biases are still not
well-understood enough to obtain a completely debiased estimate. We are unable to recover
an overall debiased distribution as velocities are not measured accurately enough, and bolide
velocity is related to both its radiant and, presumably, its probability of detection by GLM.
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Figure 11: GLM bolide detections by the local solar hour at the time of the impact (12 being noon),
split apart by season. The red line corresponds to a solar hour of 6, which is when, for an observer at
the equator, the direction of the Earth’s motion is directly above. Detections are assigned to “seasons”
according to the solar longitude at the time of the detection. Spring corresponds to a solar longitude
in the interval [−45, 45], Summer to [45, 135], Fall to [135, 225] and Winter to [225, 315]. The extreme
diurnal variation is present in all seasons.
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Figure 12: Non-Leonid bolide rate as a function of latitude, computed by fitting the model at several
confidence thresholds. Rate is per unit area per unit time. Theoretical distributions obtained using
the method of Robertson et al., 2021 with fixed radiant velocities. Higher thresholds entail a wider
posterior, as there are fewer detections. Lower thresholds emphasize the equator more, which may be
due to false positives from solar glint.
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Figure 13: Bolide rate as a function of latitude, fitted separately for GOES-16 and GOES-17 (rather
than combining the detections from both). Rate is per unit area per unit time. Theoretical distributions
obtained using the method of Robertson et al., 2021 with fixed radiant velocities. The distributions
are broadly similar, especially given the uncertainties.
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