Hyperbolic point configurations for
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Technique overview [Wil21]

Recap

Neighbor-join to obtain topology

Weighbor

character
matrix
i ﬁzéﬁ | JC69
i distance yariance rate
| estimates pstimates estimates
________ .‘._________.'
Optimize point
Initialize tune branch configuration
lengths (ML)
K oS sint ofy distance
I /M P 5 | matrix
Weighb ' hyp. embed |
SEOT L tree topology ™ b e point cfg . :
E 1 likelihood _ |1} distance
\i\ point cfg T, matrix

Weighbor

tree topology

—>

tree topology

—




Recap

Likelihood method of optimizing point configuration [Wil21]

Jukes-Cantor model
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Reca

Mean algorithm performance (RF distance) over 20 simuiateu uce

RF distance (weighted, unnormalized)
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We can do better...

JC69 model: Equal mutation rates
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So both of the following in the
method discussed are currently
invalid for CRISPR lineage tracing:
e distance matrix used for
neighbor—joining
e distance gradient used for
point tuning



Maximum-likelihood distance estimates
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that maximizes likelihood of transitioning from

an ancestor to i and j within time t.

Faster, taking into account special

Trivial but extremely inefficient: : . .
Y properties of Q (assuming no deletions):

time complexity:
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Numericaﬂy optimize to find MLE of t.
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. , (Need to think more about incorporating deletions...)
(is there a better way?)



EM Algorithm

character

matrix

Ancestor

priors

MLE

A

distance
matrix

Nei ghbor—j oining

Tree




Distance matrix Comparison

EM Algorithm CRISPR Hamming Distance Hamming Distance
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Neighbor-joining results (benchmark data from DREAM challenge)

Cool a]gorithm relying I

on known aspects of
lineage tracing data.
Doesn’t really improve

things...

Mean normalized Robinson-Foulds distances for 11 data sets

AN RN e aE s o R s, REL s e +
| algo | EM | hamm-NTR | hamm-TR |
¥ ——— S | R SR 3
| weighbor ||0.756030)| ©0.870130 | 0.839518 |
|  nj | 0.757885 |\ 0.745826 | 0.769944 |
| upgma | 0.853432 |\0.817254 | 0.811688 |
nj-lca | 0.770872 | 0,906308 | 0.911874 |
/Ff --------- i usds s ORI PR LR +
Solid baseline performance
Standard deviation of means
sl s was e o TSR RSP +
| algo | EM | hamm-NTR | hamm-TR |
R o o o o s e e +
| weighbor | ©.010450 | 0.006701 | 0.007660 |
| nj | ©.010983 | 0.009769 | 0.007463 |
| upgma | ©.008530 | 0.009857 | 0.006204 |
| nj-lca | 0.008836 | 0.605218 | 0.003995 |
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No difference between NJ performance on
EM and hamm-NTR distance matrices.
Likely due to only one guide.

Weighbor does much better on EM
distance matrix—makes sense as its
maximum-likelihood aspects rely on a
maximum-likelihood distance matrix.

Yosef Lab’s neighbor—joining method
with clever missing—value handling:

0.694805



TODO:

________________________________________

Finish incorporating ancestor priors
Improve hand]ing of missing values

Test on third—party benchmarking data with multiple guides
Change the point tuning in hyperbolic space to use a gradient based
on the better distance estimates (Cython stuff...)
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