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Likelihood method of optimizing point configuration [Wil21]
 

= conditional probability of observing b at the site 
 t time after observing a 

Jukes-Cantor model 

t, the time, is effectively evolutionary distance 

Likelihood function of 
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Maximize this 

What hyperbolic space changes 

Smooth! No reference to tree topology 
(like in maximum-likelihood tree-search) 
or discrete topology moves needed. Wil21 
further shows that maximizing l(x) 
roughly maximizes the log-likelihood of 
the tree 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We can do better… 
JC69 model: Equal mutation rates 

CRISPR Lineage tracing 

Deletions 

Targets 

Non-targets 

So both of the following in the 
method discussed are currently 
invalid for CRISPR lineage tracing: 
● distance matrix used for 

neighbor-joining 
● distance gradient used for 

point tuning 



Maximum-likelihood distance estimates

Deletions 

Targets 

Non-targets 

Trivial but extremely inefficient: 
Faster, taking into account special 
properties of Q (assuming no deletions): 

Prior on a being the ancestral state 

Distances ←→ evolutionary times. 
Obtain MLE of evolutionary time by finding t 
that maximizes likelihood of transitioning from 
an ancestor to i and j within time t. 

(Need to think more about incorporating deletions…) 

time complexity: 
[gigantic constant]×[#states]3 

Numerically optimize to find MLE of t.  
(is there a better way?) 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Distance matrix comparison 

CRISPR Hamming Distance  Hamming Distance EM Algorithm 

Double-count sites where cells x and y differ 
and are both not the initial state 



Neighbor-joining results (benchmark data from DREAM challenge) 

Mean normalized Robinson-Foulds distances for 11 data sets 

Standard deviation of means 

Yosef Lab’s neighbor-joining method 
with clever missing-value handling: 

No difference between NJ performance on 
EM and hamm-NTR distance matrices. 
Likely due to only one guide. 

Weighbor does much better on EM 
distance matrix—makes sense as its 
maximum-likelihood aspects rely on a 
maximum-likelihood distance matrix. 

Cool algorithm relying 
on known aspects of 
lineage tracing data. 
Doesn’t really improve 
things… 

Solid baseline performance 



TODO: 
● Finish incorporating ancestor priors 
● Improve handling of missing values 
● Test on third-party benchmarking data with multiple guides 
● Change the point tuning in hyperbolic space to use a gradient based 

on the better distance estimates (Cython stuff…) 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