A Back-Door Adjustment Formula for Soft Interventions

Anthony Ozerov

Consider a causal DAG G (Pearl, 2009) and a soft intervention σ_X (as defined in Correa and Bareinboim, 2020). If **Z** satisfies the back-door criterion relative to (X, Y) (Pearl, 2009, p. 79) in both G and the interventional graph G_{σ_X} , then:

$$P(y;\sigma_X) = \sum_{\mathbf{z},x} P(y|\mathbf{z},x;\sigma_X) P(x|\mathbf{z};\sigma_X) P(\mathbf{z};\sigma_X) = \sum_{\mathbf{z},x} P(y|\mathbf{z},x) P(x|\mathbf{z};\sigma_X) P(\mathbf{z})$$

The first equality is by conditional probability. The second follows by the σ -calculus (Correa and Bareinboim, 2020), where:

$$P(y|\mathbf{z}, x; \sigma_X) = P(y|\mathbf{z}, x)$$

by Rule 2, as $(Y \perp \!\!\!\perp X | \mathbf{Z})$ in $G_{\sigma_X \underline{X}}$ and $G_{\underline{X}}$, and:

$$P(\mathbf{z}; \sigma_X) = P(\mathbf{z})$$

By Rule 3, as $(Z \perp X)$ in $G_{\sigma_X \overline{X}}$ and $G_{\overline{X}}$. Finally, $P(x|\mathbf{z}; \sigma_X)$ can be obtained from whatever distribution the soft intervention σ_X forces on X.

This result isn't exactly important or significant, I just thought it was neat and didn't seem to be written anywhere, so here you go. It is very reminiscent of the regular back-door adjustment formula, and in fact the regular back-door adjustment formula is a special case where σ_X is the intervention do(x), and $P(x|\mathbf{z};\sigma_X)$ becomes zero for all values of x but the one fixed by the *do*-operator. It does help solve some simple problems involving identification under soft interventions by hand. It remains to be proven that this adjustment formula holds *only if* \mathbf{Z} satisfies the BDC relative to (X, Y) in both the original and interventional graphs.

References

Pearl, Judea (2009). Causality. Cambridge university press.

Correa, Juan and Elias Bareinboim (2020). "A calculus for stochastic interventions: Causal effect identification and surrogate experiments". In: *Proceedings of the AAAI conference on artificial intelligence*. Vol. 34. 06, pp. 10093–10100.